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Summary

We considered the problem of testing a marker for link-
age with a disease, using tests based on the transmission-
disequilibrium test (TDT). The power of such tests was
investigated for a number of possible family types, for
which the families were classified by the disease status
of family individuals. We show that parental disease
status greatly affects the power, with families containing
a single affected parent often preferred over families in
which neither parent is affected. Families with a pair of
affected sibs are of great value for all situations consid-
ered, but extension of the TDT to allow inclusion of
information from unaffected sibs rarely increases power,
if the parents have been genotyped.

Introduction

The transmission-disequilibrium test (TDT) has been
used extensively to detect linkage disequilibrium, with-
out the problems of ascertainment of appropriate pop-
ulations of cases and controls for population-association
studies (Spielman and Ewens 1996). With the increased
availability of markers and genotyping capacity, this type
of study will become more common.

The TDT has been used to narrow candidate regions
identified, through linkage analysis, in a genome screen
and to test polymorphisms in candidate genes; in the
near future, genomewide screening for linkage disequi-
librium may become feasible (Risch and Merikangas
1996). In this article, we consider the power of tests that
are based on the TDT but that use different family
structures.

The original formulation of the TDT used a single
affected offspring and two parents, for whom affectation
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status was ignored by the test statistic. We show that,
under a wide range of genetic models, the sampling of
families in which one parent is affected can improve
substantially the power of the TDT. In addition, we con-
sider the contribution of a second sibling, either affected
or unaffected. However, we must remember that, for
independent families with a single affected child, the
TDT tests the null hypothesis of no linkage or no allelic
association between marker and disease loci (Spielman
and Ewens 1996), and, therefore, the TDT often is de-
scribed as a test for linkage in the presence of allelic
association. In this article, we use the term “linkage dis-
equilibrium” to imply the presence of both linkage and
allelic association in the sample, and, therefore, we refer
to the TDT as a test for linkage disequilibrium. For
families containing multiple affected children, the situ-
ation is slightly more complicated, and this is discussed
further in the Sib-Pair Data section.

Theory

We examined the power of tests based on the TDT,
for a number of different familial patterns of disease.
Consider a locus with two alleles, M and m, for which
the allele frequencies are p and , respectively. We1 � p
used fij to specify the influence of the locus on the disease,
where, for , fij is the probability that an in-i, j � M, m
dividual with genotype ij is affected by the disease. We
assume that fij is the same for both the parental and the
offspring generations. This is exactly true only if the
locus is a candidate gene; if the locus is in fact a marker
linked to a disease locus with, for instance, allele M
associated with disease allele D, f � P(affected dMM

, for example, can be seen as the combination ofMM)
the penetrances at the disease locus and the association
of M with D (Schaid 1996). Recombinations between
parent and child result in the weakening of association
between M and D and, therefore, cause fij to differ be-
tween the two generations. However, this effect is small
over the genetic distances for which allelic association
is maintained and can be ignored safely. Also note that
the assumption that marker penetrances fMM, fMm, and
fmm are constant over the two generations is needed only
for power calculations: even if this assumption is vio-
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Table 1

Contingency Table of Transmitted and
Nontransmitted Alleles

TRANSMITTED

ALLELE

NONTRANSMITTED

ALLELEa

M m

M a b
m c d

a Letters a–d represent no. of parents.

lated, all the test statistics described here remain valid,
since they have the specified null distribution.

We also assume that individuals can be diagnosed,
without error, as affected or unaffected by the disease
of interest, so that any problems due to variable age at
onset of the disease are ignored. Most of the theoretical
development of linkage tests using allelic association has
concentrated on families with one affected child; we con-
sider these families first and then examine the effect of
extra sibs.

One Affected Child

Suppose we have n unrelated families in our sample,
each consisting of a single affected child and both par-
ents. We ignore the problems caused by missing parental
information and false paternity. For families i �

, we define zi to be 2 (�2) if both parents are1, 2,) , n
heterozygous and transmit an M (m) allele, so that the
affected child has genotype MM (mm); 1 (�1) if one
parent is heterozygous and transmits an M (m) allele,
while the other parent is homozygous; and 0 if both
parents are homozygous or if both are heterozygous and
transmit different alleles. It is easy to show that, under
the null hypothesis of no linkage disequilibrium between
the locus and the disease, and ,E(z ) � 0 Var(z ) � hi i

where h is the expected number of parents of an affected
child who are heterozygous. Families are independent;
therefore, asymptotically,

n� zi�1 i ∼ N(0, 1) ,�nh

under the null hypothesis of no linkage disequilibrium.
Usually, nh is unknown and is estimated by considera-
tion of the actual number of heterozygous parents in the
sample, denoted as in the contingency table ofb � c
transmitted and nontransmitted alleles (table 1). This
gives the test statistic

n� zi�1 i
T � ,�b � c

and the squaring of T gives the familiar TDT [(b �
, with an asymptotic distribution. Alter-2 2c) ]/(b � c) x1

natively, the TDT can be viewed as the McNemar sta-
tistic for the testing of the equality of binomial propor-
tions, after conditioning on the observed number of
heterozygous parents in the sample.

To calculate the power of the test, we need the dis-
tribution of T under the alternative hypothesis. We de-
fine tMmMM to be the event that the father is heterozygous
and transmits M to the child, while the mother is an
MM homozygote. The other possible genotype/trans-

mission events are written similarly as tx, where x �
, where A is the set of ordered parental(x x x x ) � A1 2 3 4

genotypes . LetA � {MMMM, MMMm,) , mmmm}
CA be the event that the child is affected. Under the
alternative hypothesis, we get

E(z ) � 2P(t FC ) � P(t FC ) � P(t FC )i MmMm A MmMM A Mmmm A

� P(t FC ) � P(t FC ) � P(t FC )MMMm A mmMm A MMmM A

� P(t FC ) � P(t FC ) � P(t FC )mmmM A MmMM A mMmm A

� 2P(t FC ) ,mMmM A

with corresponding formulas for Var(zi) and h derived
easily. Under the assumptions of random mating and
Hardy-Weinberg equilibrium and when the frequency of
allele xi is written as P(xi),

P(C Ft )P(x )P(x )P(x )P(x )A x 1 2 3 4P(t FC ) �x A � P(C Ft )P(y )P(y )P(y )P(y )y�A A y 1 2 3 4

f P(x )P(x )P(x )P(x )x x 1 2 3 41 3� ,� f P(y )P(y )P(y )P(y )y�A y y 1 2 3 41 3

by Bayes theorem. This enables us to calculate E(zi),
Var(zi), and h for any penetrances and allele frequencies.
Asymptotically, T has distribution

�nE(z )i Var(z )iT ∼ N , ,[ ]� hh

and, therefore, this allows us to work out the power of
the test. Note that, although the assumption of Hardy-
Weinberg equilibrium is convenient for power calcula-
tions, Hardy-Weinberg equilibrium is not necessary in
order for the tests to be valid.

The above discussion ignores any information on the
disease status of the parents. For example, if PAN indi-
cates that the father has the disease but the mother does
not, we can condition on parental disease status to get
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P(t FC , P )x A AN

f f (1 � f )P(x )P(x )P(x )P(x )x x x x x x 1 2 3 41 3 1 2 3 4� ,� f f (1 � f )P(y )P(y )P(y )P(y )y�A y y y y y y 1 2 3 41 3 1 2 3 4

as above, with similar expressions for PAA and PNN. This
allows us to compare the contributions, to power, of
families in which neither, one, or both of the parents is
affected by the disease, for any set of parameter values.

Multiplicative Disease Model

A useful and commonly used disease model (Self et
al. 1991; Risch and Merikangas 1996; Schaid 1996) is
given when haplotypes are assumed to act multiplica-
tively on the risk of disease, so that forf � f fab a b

. Under this model, the alleles transmitteda, b � M, m
from the parents of an affected child are independent,
and we can consider parents rather than families (Sham
and Curtis 1995; Curnow et al. 1998). This allows us
to examine analytically the value of affected parents. Let
PA and PN indicate that a parent of an affected child is
affected or unaffected, respectively, and let tMm be the
event that a heterozygous parent transmits an M allele
to the child, with tx defined similarly for x � B �

. We wish to compare the values{MM, Mm, mM, mm}
for affected and unaffected parents. We need to compare
only the probability of heterozygosity for affected and
unaffected parents, because, if we condition on on pa-
rental genotype, then parental disease status is irrelevant.
Therefore, we define

( )P parent heterozygousd C , PA A

g �
( )parent heterozygousd C , PA N

P(t FC , P ) � P(t FC , P )Mm A A mM A A� .
P(t FC , P ) � P(t FC , P )Mm A N mM A N

Power increases with heterozygosity; therefore, if ,g 1 1
affected parents are more valuable than unaffected par-
ents and vice versa. Now,

2f f pqM mP(t FP , C ) � ,Mm A A 2� f f P(y )P(y )y�B y y 1 21 2

with similar expressions for ,P(t d C , P ) P(t dmM A A Mm

, and . Thus,C , P ) P(t FC , P )A N mM A N

g � f f (1 � f f )f P(y )P(y )[ � ] Zm M y�B y y y 1 21 2 1

2(1 � f f ) f f P(y )P(y )[ � ]M m y�B y y 1 21 2

2 2� {f f [f (1 � f )p � (1 � f f )(f � f )m M M M m M m M

2 2#p(1 � p) � f (1 � f )(1 � p) ]}Zm m

3{(1 � f f )[f p � f f (f � f )M m M 2 M m m M

3 2#p(1 � p) � f (1 � p) ]}m

2 2{ }� f f [(1 � f )p � (1 � f )(1 � p)] Zm M M m

2 2(1 � f f )[f p � f (1 � p)] ,m M M m

which is 11 if and only if ; that is,∗p ! p � f / (f � f )m M m

an affected parent is more informative than an unaf-
fected parent if the associated allele is sufficiently rare.
An alternative phrasing would be that an affected parent
is more informative than an unaffected parent if an af-
fected individual selected at random is more likely to be
homozygous for the unassociated allele m than for the
associated allele M. Note that we are assuming implicitly
that , so that ; p* is largest when fM

∗f 1 f 1 0 p ! .5M m

and fm are of similar size, so that the locus has little
effect on the risk of disease, and p* is smallest when fM

and fm are very different in size, so that the locus has a
large effect on the risk of disease. An obvious special
case is a fully penetrant recessive disease: then, ,f � 1M

and . Thus, unaffected parents are always pre-f � 0m

ferred. This is intuitively obvious: affected parents are
MM homozygous and, therefore, can provide no infor-
mation about allele transmission. Power calculations for
multiplicative models are given in the Results and Dis-
cussion section, along with results for more-general dis-
ease models. Intuitively, we expect similar results for
these more-general disease models: affected parents will
be of most value when associated marker alleles are rare.
This is discussed in more detail in the Results and Dis-
cussion section.

Sib-Pair Data

For families with more than one child, the above
power calculations are insufficient, even if only one child
from the family is included in the analysis, because the
presence of other children changes the probabilities of
the parents being heterozygous. For example, consider
a fully penetrant recessive disease: in a family comprising
one affected and three unaffected children, the proba-
bility that the father is heterozygous is higher than that
for a family with a single affected child. Therefore, the
formulas in the previous section represent “averages”
over families of various types. In this section, we con-
sider the value of families with two sibs, one affected
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and the other either affected or unaffected, by using tests
based on the TDT.

Obviously, tests such as the TDT can be applied to
families in which both sibs are affected: the TDT remains
a test for linkage in the presence of allelic association;
however, now, allelic association in the sample may be
because of the common parentage of the affected sibs,
rather than because of population allelic associations.
Therefore, the TDT usually is described as a test for
linkage when it is applied to pairs of affected sibs (Spiel-
man and Ewens 1996). As expected, the use of affected
sib pairs reduces the number of families required for a
particular size and power (Risch and Merikangas 1996).
Whether unaffected sibs are of any value in TDT-based
tests is less obvious (Boehnke and Langefeld 1997), apart
from the use of information on unaffected sibs to infer
missing parental genotypes. Indeed, if unaffected sibs are
to be included, the appropriate test statistic is not ob-
vious. The most obvious statistic involves use of zi, in-
troduced above, but with the coding for unaffected sibs
reversed, so that, for example, zi is 2 if both parents are
heterozygous and transmit an M allele to an affected
child and �2 if both parents are heterozygous and trans-
mit an M allele to an unaffected child. This gives the
test statistic

n� (z � z )i�1 Ai Ni
T � ,equal �b � c

where zAi and zNi describe the parental transmissions to
the affected and unaffected children in the ith family.
However, this statistic clearly is not optimal, because
transmissions to affected children will be more infor-
mative than transmissions to unaffected children and
should be given a correspondingly higher weight in the
test statistic.

Schaid (1996) derived score tests for families with a
single affected child, under several disease models; in
particular, he shows that the TDT is the score test for
a biallelic marker, under the multiplicative disease model

, and that this test often is preferable to the scoref � f fij i j

test for the general disease model, because it uses fewer
parameters (fM and fm in our notation) than the more
general model (fMM, fMm, and fmm). Here, we derive a test
statistic that includes information from unaffected chil-
dren, by considering the locally most powerful test
around the null hypothesis that the locus is not linked
to the disease. We derive the test statistic for the mul-
tiplicative model .f � f fij i j

Suppose we have n independent families with one af-
fected and one unaffected child. Let sAi be the number
of M alleles in the affected sib of the ith family and sNi

be the number of M alleles in the unaffected sib, and
let describe the genotypes of the father andg � (g , g )i Fi Mi

mother of the sibs. Under the disease model , thef � f fij i j

probability that the sibs having genotype ,s � (s , s )i Ai Ni

conditional on parental genotypes, is

P (sFg , C )1 i i AN

s 2�s s 2�sAi Ai Ni Nif f (1 � f f )P(sFg )M m M m i i� ,y 2�y y 2�yA A N N� f f (1 � f f )P(yFg )y�S M m M m i

where S is the set of possible genotypes for the sibs. The
corresponding probability under the null hypothesis of
no linkage is

P(sFg )i iP (sFg , C ) � .0 i i AN � P(yFg )y�S i

By standard statistical theory (Cox and Hinkley
1974), the most powerful test for any set of parameter
values is given by rejection of the null hypothesis, if

nP P (sFg ,C )i�1 1 i i ANc ! ,nP P (sFg ,C )i�1 0 i i AN

for c chosen to give the desired significance level. The
denominator of this expression depends only on the pa-
rental genotypes; therefore, equivalently, we reject if

n

c ! ln [P (sFg , C ) ,�1 1 i i AN
i�1

with c1 determined by the parental genotypes and the
required significance level. We derive an approximation
for this expression that is valid near the null hypothesis,
by setting so thatbe � f /fM m

bs 2 bsAi Nie (1 � f e )mP (sFg , C ) � .1 i i AN by 2 byAi Ni ( )� e 1 � f e P yFg[ ]y�S m i

Furthermore, , so thatxe ≈ 1 � x

P (sFg , C )1 i i AN

2(1 � bs )[1 � f (1 � bs )]Ai m Ni≈ .2� (1 � by )[1 � f (1 � by )]P(yFg )y�S Ai m Ni i

Around the null hypothesis, ; we therefore can ig-b ≈ 0
nore b2 terms, to get

P (sFg , C )1 i i AN

21 � bs � f (1 � bs � bs )Ai m Ai Ni≈ ,21 � bE (S Fg ) � f [1 � bE (S Fg ) � E (S Fg )]0 Ai i m 0 Ai i 0 Ni i

where are the expected genotypesE (S Fg ) � E (S Fg )0 Ai i 0 Ni i
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Table 2

Disease Models for Dominant, Recessive, Multiplicative, and Additive Models

Model
Model
Typea

Disease
Frequency pM fMM fMm fmm

Attributable
Risk

1 Dom .100 .050 .76923 .76923 .02770 .72
2 Dom .001 .050 .00513 .00513 .00055 .45
3 Dom .100 .100 .13158 .13158 .09259 .07
4 Rec .010 .400 .03125 .00595 .00595 .41
5 Rec .001 .010 .50000 .00095 .00095 .05
6 Rec .001 .075 .01778 .00091 .00091 .09
7 Rec .001 .200 .01875 .00026 .00026 .74
8 Mult .100 .125 .54903 .18936 .06531 .35
9 Mult .010 .025 .28719 .04760 .00789 .21
10 Mult .001 .025 .00421 .00200 .00095 .05
11 Add .010 .150 .02745 .01719 .00692 .31
12 Add .001 .050 .00421 .00252 .00083 .17

a Dom � dominant, Rec � recessive, Mult � multiplicative, and Add � additive.

Table 3

Results for Families Ascertained on the Basis of a Single Affected
Child, by Parental Disease Status

MODEL

NO. OF FAMILIES NEEDED,
BY PARENTAL STATUS

POPULATION

FREQUENCY, BY

PARENTAL STATUS

NN AN AA XX NN AN AA

1 108 45 126 64 .3774 .5737 .0488
2 134 87 118 134 .9963 .0037 .0000
3 4,163 3,694 3,401 4,062 .8080 .1818 .0102
4 181 171 242 181 .9752 .0246 .0002
5 562 148 202 559 .9976 .0024 .0000
6 564 310 258 563 .9978 .0022 .0000
7 39 48 349 39 .9938 .0062 .0000
8 258 196 158 240 .7643 .2199 .0158
9 260 118 77 253 .9705 .0293 .0002
10 2,121 1,442 1,092 2,120 .9979 .0021 .0000
11 394 339 317 392 .9774 .0224 .0001
12 481 313 258 480 .9978 .0022 .0000

NOTE.—NN � two unaffected parents, AN � one affected and one
unaffected parent, and AA � two affected parents. “XX” indicates
that the disease status of each parent was not considered when the
family was ascertained.

of the offspring, given the parental genotypes. Using
, we getln (1 � x) ≈ x

2ln [P (sFg , C )] ≈ b{(1 � f )[s � E (S Fg )]1 i i AN m Ai 0 Ai i

2� f [s � E (S Fg )]} .m Ni 0 Ni i

Thus, an approximation to the most powerful test near
the null hypothesis is to reject the null hypothesis if

n

2c ! (1 � f )[s � E (S Fg )]�1 m Ai 0 Ai i
i�1

2� f [s � E (S Fg )] ,m Ni 0 Ni i

with c1 determined by the parental genotypes and the
required significance level. In fact, we use the equivalent
test

c ! T �2 sib

n 2 2� {(1 � f )[s � E (S Fg )]} � f [s � E (S Fg )]i�1 m Ai 0 Ai i m Ni 0 Ni i
,

2 2 4�h[(1 � f ) � f ]m m

where h is the expected number of parents who are het-
erozygous, under the null hypothesis. This is a version
of the TDT with transmissions from parents to affected
offspring and to unaffected offspring, coded as above
but weighted by and , respectively. The ex-2 21 � f fm m

pression contains two unknowns, h and . We estimate2fm
h from the data, as for the usual TDT, and obtain a
value for by assuming that the population prevalence2fm
of the disease is . Under the null hypothesis,2f T ∼m

, asymptotically; under the alternative hypothe-N(0, 1)
sis, the distribution of T can be determined as described
above, by calculation of , and, thus, powerP(g, sFC )AN

can be calculated. Again, this is easily extended to take
into account the disease status of the parents.

Note that, although Tsib is derived under the assump-
tions of a multiplicative model and n independent fam-
ilies, the test statistic remains valid as a test for linkage,
in the sense that it has the specified distribution, for any
disease model and for more-general family structures.
However, tests derived under the correct disease model
probably will have more power than Tsib. In this sense,
Tsib resembles the TDT; Schaid and Sommer (1994)
showed that the TDT can be derived as the score test
under the multiplicative model, and they derived cor-
responding test statistics for recessive and dominant
models. Schaid and Sommer (1994) also showed that
these test statistics can have greater power than the TDT
if the mode of inheritance of the disease is recessive or
dominant.
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Table 4

Results for Families Ascertained on the Basis of One Affected and
One Unaffected Child, by Parental Disease Status

MODEL

AND

STATISTIC

NO. OF FAMILIES NEEDED,
BY PARENTAL STATUS

POPULATION

FREQUENCY, BY

PARENTAL STATUS

NN AN AA XX NN AN AA

1:
Tsib 129 38 87 64 .4577 .5081 .0341
Tequal 112 33 54 55
Tonly 146 43 107 73

2:
Tsib 134 87 118 134 .9963 .0037 .0000
Tequal 274 181 244 273
Tonly 134 87 118 134

3:
Tsib 4,149 3,676 3,380 4,048 .8082 .1816 .0102
Tequal 6,645 5,887 5,412 6,483
Tonly 4,215 3,734 3,434 4,112

4:
Tsib 182 171 241 182 .9753 .0245 .0002
Tequal 352 332 468 351
Tonly 182 171 241 182

5:
Tsib 661 184 189 658 .9977 .0023 .0000
Tequal 990 230 230 986
Tonly 661 184 189 658

6:
Tsib 568 312 259 567 .9978 .0022 .0000
Tequal 1,103 610 508 1,101
Tonly 568 312 259 567

7:
Tsib 39 48 346 39 .9938 .0062 .0000
Tequal 78 100 683 79
Tonly 39 48 346 39

8:
Tsib 267 197 154 247 .7733 .2124 .0143
Tequal 382 270 194 349
Tonly 275 205 162 255

9:
Tsib 266 120 78 259 .9709 .0289 .0002
Tequal 496 223 138 482
Tonly 266 121 78 259

10:
Tsib 2,122 1,442 1,092 2,121 .9979 .0021 .0000
Tequal 4,235 2,879 2,180 4,231
Tonly 2,122 1,442 1,092 2,121

11:
Tsib 394 339 317 393 .9775 .0224 .0001
Tequal 773 664 621 770
Tonly 394 339 317 393

12:
Tsib 481 313 258 480 .9978 .0022 .0000
Tequal 964 629 519 963
Tonly 481 313 258 480

NOTE.—NN � two unaffected parents, AN � one affected and one
unaffected parent, and AA � two affected parents. “XX” indicates
that the disease status of each parent was not considered when the
family was ascertained.

Results and Discussion

The formulas given above allowed us to compare the
value of families with different patterns of disease status,
under a variety of genetic models. We considered families
ascertained on the basis of a single affected child, two
affected children, or one affected and one unaffected
child, and, for each case, we considered the power for
0, 1, or 2 affected parents. Calculations were performed
for a large number of genetic models; for the sake of
brevity, we give the results for a relatively small number
of models. The general conclusions given below apply
to all models considered.

The disease models used (table 2) were parameterized
in terms of the frequency of allele M and the genotype
penetrances, fMM, fMm, and fmm. Four classes of models
were considered: dominant, recessive, multiplicative,
and additive; the additive model has forf � f � fij i j

. We also determined the attributablei, j � M, m
risk— , where K is disease prevalence—which(K � f )/Kmm

is the proportion of cases that can be attributed to the
increased risk conferred by allele M (e.g., see Boehnke
and Langefeld 1998). The remaining proportion of cases
reflects environmental causes and the influence of other
genetic loci.

Results are displayed as the number of families of each
type required in order to obtain a power of 0.8 and a
size of (tables 3–5). This size and power were�85 # 10
chosen by Risch and Merikangas (1996) to be appro-
priate for a genome scan: since we were interested mainly
in a candidate gene, a rather higher power and smaller
size would have been more suitable, but we retained the
Risch and Merikangas (1996) values, to allow compar-
ison with their article. The pattern of the results was the
same for other type 1 and type 2 errors, although, of
course, the number of families changed greatly. In prac-
tice, studies would not be restricted to a single family
type, but use of this restriction gives a guide to the power
contributed by each type of family.

Table 3 shows the results for families with a single
affected child, table 4 for families with one affected and
one unaffected child, and table 5 for affected sib pairs.
For families with one affected and one unaffected child,
we considered three possible test statistics: Tonly, the
usual TDT test statistic, which uses only transmissions
to the affected sib, and Tsib and Tequal, derived above. For
each situation, we also give the number of families re-
quired for a power of 0.8 and a size of if the�85 # 10
families are ascertained solely on the basis of a single
affected child, ignoring parental disease status. We also
provide the frequencies of the various parental disease
types, conditional on the specified offspring; for exam-
ple, the frequencies of the parental disease configurations
in table 3 are conditional on the family having a single
affected child.
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Table 5

Results for Families Ascertained on the Basis of Two Affected
Children, by Parental Disease Status

MODEL

NO. OF FAMILIES NEEDED,
BY PARENTAL STATUS

POPULATION

FREQUENCY, BY

PARENTAL STATUS

NN AN AA XX NN AN AA

1 26 24 74 26 .2207 .7018 .0775
2 45 42 65 45 .9946 .0054 .0000
3 1,879 1,688 1,573 1,838 .8058 .1837 .0105
4 71 81 152 71 .9682 .0316 .0003
5 11 16 133 11 .9809 .0190 .0001
6 46 35 61 46 .9963 .0037 .0000
7 16 29 363 16 .9878 .0122 .0000
8 90 81 74 87 .7027 .2712 .0262
9 52 37 28 51 .9465 .0527 .0007
10 722 503 386 721 .9979 .0021 .0000
11 171 161 159 171 .9745 .0253 .0002
12 159 120 108 159 .9974 .0026 .0000

NOTE.—NN � two unaffected parents, AN � one affected and one
unaffected parent, and AA � two affected parents. “XX” indicates
that the disease status of each parent was not considered when the
family was ascertained.

Figure 1 No. of families needed for power of 0.8 and size of
, plotted against frequency of the M allele, for families with�85 # 10

0, 1, and 2 affected parents and for disease model , ,f � f � .07MM Mm

and .f � .01mm

Note that families with one affected and one unaf-
fected child for which only the affected child was used
in the analysis often gave lower power than families for
which only a single affected child was used, because the
presence of an unaffected sib increases the chance that
an affected child is a nongenetic case. Thus, Tsib and
Tequal in table 4 should be compared with Tonly, rather
than with the results in table 3. First, we examine the
effect of parental disease status on families with a single
affected child. For multiplicative models, we showed
above that, if the disease allele is sufficiently rare, af-
fected parents are more valuable than unaffected par-
ents. For the multiplicative models given in table 2 (mod-
els 8–10), affected parents are always preferred, because
disease-allele frequencies are below this rarity threshold.
Note that the sample-size reductions gained by selection
of affected parents can be considerable; for example, for
model 9, samples of 77 families with both parents af-
fected, 118 families with a single affected parent, or 260
families with neither parent affected are required in or-
der to obtain the specified size and power.

A similar trend can be seen for other, nonmultipli-
cative disease models: affected parents are of the most
value when the disease allele is rare. There is, however,
one crucial difference: because parental transmissions
are no longer independent, families with a single affected
parent possibly may be more powerful than families with
0 or 2 affected parents. This trend is depicted in figure
1, which plots power for the disease model ,f � .1MM

, and and a range of allele frequen-f � .07 f � .01Mm mm

cies. For rare alleles ( ), families with two affectedp ! .03
parents are optimal; for allele frequencies of 1∼.16, fam-

ilies with no affected parents are optimal; and, for fre-
quencies in the intervening range, families with a single
affected parent are favored.

Families with a single affected parent seem to be op-
timal for dominant disease models, in most cases (see
models 1 and 2). The fact that the presence of an affected
parent increases power for dominant models is not sur-
prising: for most dominant models, affected parents are
more likely than unaffected parents to be Mm hetero-
zygotes. However, the same argument would lead us to
expect families with two affected parents to be more
valuable than families with one affected and one unaf-
fected parent. This is not always true, as can be easily
seen when a simple, fully penetrant dominant disease is
considered. If the allele frequency is low, affected parents
will be heterozygotes, and unaffected parents will be mm
homozygotes. In a family with a single affected parent,
this parent will transmit an M allele to the affected child.
In a family with two affected parents, one parent will
transmit an M allele to the affected child, but the other
parent is equally likely to transmit an M or an m allele,
thus weakening the evidence for association between the
disease and the M allele. Similar arguments apply to
other dominant models, when the locus has a consid-
erable effect on disease susceptibility. Thus, for models
1 and 2, families with a single affected parent are op-
timal, whereas for model 3, in which the locus is less
influential, two affected parents are optimal.

For recessive and additive models (models 4–7, 11,
and 12), the position is less clear. Families with 0, 1, or
2 affected parents can be optimal. Sampling of families
with a single affected parent often results in a worth-
while reduction in sample size, compared with sampling
of families solely on the basis of an affected child. Note
that families with two affected parents are always rare
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but that families with a single affected parent are much
more common, particularly for common diseases.

The results for sib-pair data also are reasonably easy
to interpret (tables 4 and 5). The most obvious result is
the high power, for nearly all the disease models, of
affected–sib-pair families, compared with that for single-
affected families. This already has been noted, by Risch
and Merikangas (1996), for the special case of multi-
plicative disease models. Our results indicate that inclu-
sion of unaffected offspring in the analysis can, but in
general does not, result in extra power (models 1, 3, and
8) and never reduces the required sample size enough
so that genotyping of the unaffected sib is worthwhile.
We stress that this is true only if full parental genotypes
are available. In the absence of parental genotypes,
unaffected sibs indeed may be of value (Curtis 1997;
Boehnke and Langefeld 1998; Spielman and Ewens
1998).

Of the test statistics used, Tequal gives the largest power
increases when unaffected sibs are of value but, as ex-
pected, performs very badly in most cases. Tsib gives less
dramatic results: usually, the power is comparable to
that obtained when the unaffected child is ignored and,
in a few cases, improves slightly (e.g., model 3). Again,
this was expected, because Tsib tends to put little weight
on transmissions to the unaffected child. Further work
on alternative weightings of information from affected
and unaffected sibs (Thompson 1997) has confirmed the
lack of value of unaffected sibs when parental infor-
mation is available. Intuitively, this is because the prob-
ability of a heterozygous parent transmitting an M allele
to an unaffected child remains ∼.5 for a broad class of
disease models (Spielman and Ewens 1998), so that the
number of M alleles transmitted to unaffected offspring
varies little from its expected value under the null
hypothesis.

For affected sib pairs, the relationship between pa-
rental disease status and power seems to be broadly sim-
ilar to that for families with a single affected child, dis-
cussed above. Differences do arise in, for example,
multiplicative models. The threshold gene frequency at
which affected parents cease to be preferred is lower for
pairs of affected sibs than for singletons, so that affected
parents possibly may be preferred for families with a
single affected child, and unaffected parents may be pre-
ferred for families with affected sib pairs. Similar results
occur for other types of models (e.g., model 5).

Conclusions

We considered the influence of family structure on the
power of the TDT, for a sample of affected children for
whom full parental data were available. Theoretical
models have been presented for the multiplicative model,
and simulation has been used to cover a wide range of

dominant, recessive, and additive models. The results
given in this article reflect the full range of models tested,
and, although the absolute numbers of families required
varied greatly, some generalizations regarding the rela-
tive power of different family structures may be made.
For many of the models tested, ascertainment of parent-
offspring trios with one affected parent resulted in a
substantial increase in power. Furthermore, for the mod-
els in which an affected parent was not advantageous,
the frequency of affected parents often was so low that
these types of families would be difficult to identify;
therefore, sample availability could be used as an effec-
tive guide to the most powerful TDT families to collect.
The availability of an affected parent will depend on the
trait under consideration. For a late-onset or a highly
lethal trait, these family structures will be rare. However,
for common and less severely debilitating diseases, such
as asthma or diabetes, these families will be easily ac-
cessible. Two affected siblings are clearly the most effi-
cient family unit and provided dramatic reductions in
sample sizes in many of the models considered. Within
these families, ascertainment of affected parents can be
valuable and follows the same pattern as that seen for
families with a single affected offspring. However, given
a choice between sampling families with two affected
offspring and sampling those with an affected parent,
the value of the additional affected sibling outweighs the
value of the affected parent, in each case.

Acknowledgments

We are grateful to Robert Curnow, Andrew Morris, and
Chris Mathew, for their helpful discussions of this work, and
to two anonymous reviewers, whose comments improved the
paper. This work was supported, in part, by grant HG00571
from the National Institutes of Heath.

References

Boehnke M, Langefeld CD (1997) A transmission/disequilib-
rium test that uses both affected and unaffected offspring.
Am J Hum Genet Suppl 61:A269

——— (1998) Genetic association mapping based on discor-
dant sib pairs: the discordant-alleles test. Am J Hum Genet
62:950–961

Cox DR, Hinkley DV (1974) Theoretical statistics. Chapman
& Hall, London

Curnow RN, Morris AP, Whittaker JC (1998) Locating genes
involved in human diseases. Appl Stat 47:63–76

Curtis D (1997) Use of siblings as controls in case-control
association studies. Ann Hum Genet 61:319–333

Risch N, Merikangas K (1996) The future of genetic studies
of complex human diseases. Science 273:1516–1517

Schaid DJ (1996) General score tests for associations of genetic
markers with disease using cases and their parents. Genet
Epidemiol 13:423–449



Whittaker and Lewis: Family Structure and Tests for Allelic Association 897

Schaid DJ, Sommer SS (1994) Comparison of statistics for
candidate-gene association studies using cases and parents.
Am J Hum Genet 55:402–409

Self SG, Longton G, Kopecky KJ, Liang KY (1991) On esti-
mating HLA-disease association with application to a study
of aplastic anemia. Biometrics 47:53–61

Sham PC, Curtis D (1995) An extended transmission/disequi-
librium test (TDT) for multi-allele marker loci. Ann Hum
Genet 59:323–336

Spielman RS, Ewens WJ (1996) The TDT and other family-
based tests for linkage disequilibrium and association. Am
J Hum Genet 59:983–989

——— (1998) A sibship test for linkage in the presence of
association: the sib transmission/disequilibrium test. Am J
Hum Genet 62:450–458

Thompson DJ (1997) Using information from unaffected sibs
in genetic association studies. MS dissertation, University of
Reading, Reading, United Kingdom


	The Effect of Family Structure on Linkage Tests Using Allelic Association
	Summary
	Introduction
	Theory
	One Affected Child
	Multiplicative Disease Model
	Sib-Pair Data
	Results and Discussion
	Conclusions
	Acknowledgments
	References


